
MATHEMATICS OF COMPUTATION, VOLUME 27, NUMBER 121, JANUARY, 1973 

Computing the Brouwer Degree in R2 

By P. J. Erdelsky 

Abstract. A very simple rigorous procedure is derived for computing the Brouwer degree 
in R2, a generalization of the zero-counting integral f f'(z) dz/f(z), for functions which are 
Lipschitz continuous on a piecewise linear path of integration, using only computed or 
observed values of f(z), a bound for the error in them, and a bound for the Lipschitz con- 
stant. It is used to locate zeros and to test the numerical significance of zeros found by 
other methods. 

1. Introduction. Let -y: [a, b] -* R2 be any positively oriented Jordan curve in 
the plane, and let f: R2 -, R2 be continuous. The well-known degree Qf f on -y, denoted 
by d(f, -y), is the Brouwer degree of f(z)/IIf(z)I I restricted to y, or the winding number 
of f(-y(t)) with respect to the origin. It is defined if there are no zeros of f on -y; it is 
an additive function of the path -y; and it is invariant under continuous deformations 
of f or y which do not put zeros of f on y. 

If f is analytic, of course, d(f, -y) is the sum of the multiplicities of the zeros of f 
inside y. Of greater interest, however, is the fact that if d(f, -y) 4 0, then there must 
be at least one zero of f inside -y, even if f is not analytic. (Otherwise, -y could be 
continuously deformed to a point without crossing a zero of f, so d(f, -y) = 0.) This 
fact can be used to prove the existence of zeros of functions about which very little 
is known and to map out areas in which their zeros must lie. 

An isolated zero of a nonanalytic f such that d(f, -y) = 0 for every sufficiently 
small y containing it (e.g., the zero of f(z) = Izi) cannot be detected this way, but it 
is not numerically significant, for it can be removed by an arbitrarily small per- 
turbation of f. On the other hand, if d(f, -y) 5 0, there is at least one zero of f inside 
-y which cannot be removed this way. Therefore, a zero which has been found by 
any other method can be tested for numerical significance (in this sense) by putting 
a small curve y around it and computing d(f, y). 

2. Computing the Degree. Delves and Lyness [1] have given algorithms, 
based on quadrature formulas, for computing d(f, -y) when f is analytic and presumed 
to be known exactly. These algorithms are superior to ours when f is sufficiently 
well-behaved. However, our algorithm also works for nonanalytic f and for functions 
known only approximately. It is completely rigorous and does not depend on error 
bounds for quadrature formulas which may be hard to compute. The computer 
program for our algorithm is extraordinarily simple, thereby reducing the amount 
of computing time used for "housekeeping" activities. 
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We shall identify R2 with the complex plane C, but the structure of C will be used 
only for convenience in notation. We shall use the norm IIzII = max(IRe zI, lIm zl) 
because it is easy to compute; but other norms could also be used, with necessary 
changes. 

We assume that there is a constant L such that I If(z) - f(Z2)11 < Lizi - Z2I1 
for all z1, z2 C a, and that the computed or observed value f*(z) obeys I If*(z)-f(z)I I 
< E for all z C y, where e includes the effects of round-off, interpolation and observa- 
tion errors. 

The degree cannot be found by this method unless 11f*(z)II - 2E > , > 0 for 
all values of f*(z) computed in the algorithm. Accordingly, the algorithm will give 
an abnormal termination whenever this condition fails. 

We choose a subdivision a = to < t1 < t2 < * * * < t. = b so that, for k = 0, 
1, * * , n - 1, both Fk+l and f(y(t)) for tk < t < t,+, lie in the open square Sk = 

{s I Is - FklI < IIFkl I }, where we define Fj = f*(y(tj)). 
If y is piecewise linear (i.e., a polygon appropriately parameterized), then this 

is most easily done by setting 

tk+1 = min[bk, tk + 
ILFkII 

- 2) (bk ak) L II'y(bk)- 'y(ak)lII(k-a) 

where ak < tk < bk and y is linear on [ak, bk]. (Any other y can be approximated 
arbitrarily well by a piecewise linear function.) 

Since Fk, Fk+1 and f('y(t)) for tk < t < tk+1 are all in the convex set Sk, which does 
not contain the origin, the winding number of f(y(t)) is not changed if we perturb 
each piece of it, in the obvious way, to the straight line segment from Fk to Fk+l. 

Hence, d(f, 'y) is the winding number of the polygon with vertices Fk, k = 0, 
1, * , n, and all we need to do is to count the number of times this polygon crosses 
the positive real axis, and in which directions. The counting can be combined with 
the determination of the tk. 

If Re Fk < ilm Fkl, then Sk does not contain any of the positive real axis, so we 
can exclude the segment from Fk to Fk+j from the counting. 

If Re Fk > Ilm Fkl, then Sk does not contain any of the nonpositive real axis. 
If Im Fk and Im Fk+l have opposite signs, then the segment from Fk to Fk+, crosses 
the positive real axis once in the direction determined by the sign of Im Fk+l - Im Fk. 

If they have the same sign, the segment does not cross. Moreover, if 0 is consistently 
treated as a negative number in these tests, they are exhaustive, and the winding 
number is unaffected, since this treatment corresponds to lowering the entire polygon 
an arbitrarily small distance. 

Since each Fk belongs to two segments, its sign is tested twice. It is essential that 
the two tests give the same result. In particular, Fo and F. must be equal, and they 
should not be calculated separately, lest a round-off error produce different values 
for the signs of their imaginary parts. 

The following Algol 60 procedure performs the part of the algorithm associated 
with the part of y which is a line segment from u to v, reparameterized with 0 < t _ 1. 
The value of the procedure is the crossing count. The departures from Algol syntax, 
which we use for clarity and brevity, have obvious meanings. The function norm(z) 
is the previously defined normlIzI I. 
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integer procedure Degree(u,v,abnormal termination); 
complex u,v; label abnormal termination; 

begin 
real t; integer d; complex Fk,Fkl; 
comment f, E, L, ,u and norm are global identifiers described in the text; 
integer procedure SIP(z); complex z; 

if Im(z)>O then SIP:= 1 else SIP:=O; 
d: = O; t: = O; Fk: = f(u); 
comment Statements may be placed here to compute special values 
of e, L and ,u applicable to this segment only; 
for t: = t+(norm(Fk) - 2Xe)/(LX norm(v- u)) while t < 1 do 
begin 

if norm (Fk)- 2X e <,u then go to abnormal termination; 
Fkl : = f((1-t)X u+tX v); 
if Re(Fk)> abs(Im(Fk)) then d: = d+ SIP(Fk 1)- SIP(Fk); 
Fk: = Fkl; 

end; 
if Re(Fk)> abs(Im(Fk)) then Degree: = d+ SIP(f(v))- SIP(Fk) else Degree: d; 

end 
Then, for a polygon y with vertices z1, z2, * , * Zm d(f, y) = Degree(z, z2, label) + 

Degree(z2, z3, label) + e.. + Degree(zm, z1, label). Notice that the procedure and 
calls are constructed so that the two evaluations of each Fk give the same result. 

If a procedure of this type is used, e, L and ,u need only apply to the particular 
segment involved, and may therefore be recomputed inside each procedure call. 
The values of L and e should be slightly larger than they theoretically need to be 
so that a round-off error in the procedure computations will not permit Fk, Fk+l 
or f(y(t)) for any tk < t < tk+ to lie outside Sk. 

The value of ,u, however, is a matter of discretion; any positive value will suffice. 
(If ,u < 0, the algorithm might never terminate.) The number of iterations in thefor 
loop does not exceed Lllu - v /,I. The smaller A is, the longer the procedure may 
work before giving an abnormal termination. 

3. Finding Zeros. If d(f, y) # 0 and we divide the interior of -y into two regions 
enclosed by -y, and y2, then, since d(f, y) = d(f, -y,) + d(f, y2), either d(f, -y') ' 0 or 
d(f, y2) 5 0 or both (provided they can be computed), so we have a smaller region 
or regions in which zeros of f must lie. By repeating this process and discarding 
curves on which the degree is 0, we can locate some of the zeros of f inside the original 
curve, or all of them if f is analytic. This is actually a two-dimensional analog of 
binary search. 

If f is not analytic, then all numerically insignificant zeros will be overlooked, 
and some significant zeros might be overlooked if they lie inside a curve on which 
the degree is 0. It may be wise, therefore, not to discard any curves, at least in the 
first few steps. If f has nonisolated zeros, it might be impossible to divide a region 
so that the degree can be computed on the two parts. 

We shall use triangular regions for ease in programming, although rectangular 
regions might give more readable results for some purposes. 

Suppose the degree of f is nonzero on the positively oriented triangle whose 
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vertices are (u, v, w), respectively. We split the triangle along the median from u to 
s = (v + w)/2. Then we find the degree of f on the triangle (s, u, v), if possible, and 
the degree on the triangle (s, w, u) by subtraction. If one of the zeros of f is too close 
to the median, we may have to move s a bit. If the zeros of f are not isolated, it may 
be impossible to split the triangle in this way, in which case we stop after a predeter- 
mined number z of attempts. 

Then, we repeat the process on the triangles (s, u, v) and (s, w, u), or on one of 
them if the degree of f on the other is 0. The order of the vertices is important. Both 
triangles are positively oriented and both begin with the new vertex s. Consistent 
use of these rules guarantees that alternate "generations" of triangles are similar, 
except for the first "generation". Since their areas are halved at each step, their 
diameters tend to 0. Their shape may be altered somewhat if s cannot be chosen equal 
to (v + w)/2, but we will still get convergence if s = Ov + (1 - O)w, where 0 < a < 

< ? < 1. 
The following Algol 60 procedure (with some departures from Algol syntax) 

finds zeros to an accuracy p, if possible, where duvw is the degree of f on the original 
triangle (u, v, w), a = .5 and A = .75. The procedure is not the most efficient-for 
example, some line segments are processed twice by the procedure Degree-but the 
necessary improvements are obvious. 
procedure Find zeros(u,v,w,duvw); complex u,v,w; integer duvw; 
if duvw0 then 
begin 

real 0; complex s; integer dsuv; 
comment p, 1, Degree and norm are global identifiers described in the text; 
if max(norm(u-v),norm(u-w),norm(v-w))> p then 
for 0:= .5 step .25/(2-1) until .75 do 
begin 

s: = OX v+(l-O)X w; 
dsuv: = Degree(s,u,fail)+Degree(u,v,fail)+Degree(v,s,fail); 
Find zeros (s,u,v,dsuv); 
Find zeros (s,w,u,duvw-dsuv); 
go to exit; 

fail: 
end; 
print (duvw,u,v,w); 

exit: 
end 

In a 6-neighborhood of a k-fold zero of an analytic function, or a similar zero 
of a nonanalytic function, the average value of IFkl - 2e can usually be taken to 
be O(bk) as b -* 0. If the value of L is constant, the number of function evaluations 
required to split a triangle in the neighborhood will be O(l-k), and it will be bounded 
for simple zeros. For the zeros of z2 + Izi, for example, this bound was typically 
between 10 and 20. Apart from its other advantages, the algorithm is a practical 
way to compute well-conditioned zeros of nonanalytic functions. 

It is not practical to compute multiple or very close zeros to arbitrary accuracies 
unless the value of L can be suitably revised. For example, if f(z) is a polynomial, 
we can expand f'(z) = E q (z - c)' about the center c of the line segment. This 
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can be done by synthetic division with tolerable round-off errors [4]. If X is the length 
of the segment, then L = 21/2 E lqil(X/2)i is O(5k1-) when the segment is in a 5- 
neighborhood of a k-fold zero. For polynomials, however, other methods [3] of 
finding all the zeros are probably better. 

4. Numerical Examples. The procedures were first used to locate the zeros 
0, - 1 and 2 i 2 4V3i of the simple nonanalytic function f(z) = Z2 + 2. Since the zeros 
all obey lzl < 1 (a fact that could have been deduced easily from the expression for 
f(z)), the triangle with vertices at t2 - i and 2i contains all of them. An appropriate 
Lipschitz constant for Z2 on this triangle is the maximum of iRe(d/dz)z2I + 
IIm(d/dz)z21, or 6. We add the obvious Lipschitz constant 1 for 2 to obtain L = 7. 
The other parameters were taken as E = 10-8, , = 10-8, = 6 and p = .05. 

A nonrecursive variant of the procedure "Find zeros" was used in which the 
degree along the segment uv was retrieved from previous calculations instead of being 
calculated anew. Also, no triangles were discarded from the first five generations. 
This was necessary because the degree of the zero at z = 0 is - 1 and the other three 
have degree 1. 

The roots were separated in the fifth generation and had been found to the desired 
accuracy by the 15th. The number of times f(z) was evaluated, which is a good measure 
of the quantity of computation, was 27 times per splitting, on the average. The 
average would have been smaller if the value of L had been suitably revised. 

Similar procedures were used on the polynomials z' + 1 and Z5(z + 1), except 
that triangles with zero degree were discarded immediately. The Lipschitz constant 
L was obtained by the aforementioned synthetic division process. 

The number of function evaluations required to separate the zeros was large- 
about 12,000 and 4,700, respectively-and the number required to split a triangle 
containing multiple zeros was also large. However, the average number required 
to split a small triangle containing a simple zero was only about 12. 
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